Course Code	Course Name	Credits
MEDLO7042	Vibration Controls	03

Objectives :

- 1. To study Vibration Absorbers.
- 2. To study Vibration Isolators.
- 3. To study Vibration Control.

Outcomes: Learner will be able to...

- 1. Apply basic concepts of Vibration Isolation and Damping.
- 2. Identify suitable Vibration Absorber
- 3. Identify suitable Vibration Isolator
- 4. Apply suitable method to Control the vibrations to the acceptable level.

Module	Contents	Hours
1	1.1 Introduction: Vibration reduction at source, factors affecting vibration level, isolation of the source, methods of vibration control, dynamic properties and selection of materials	05
2	2.1 Dynamic vibration absorbers: Dynamic vibration neutralizers, self-tuned pendulum neutralizer, optimum design of damped absorbers, absorber with ideal spring and viscous dashpot, gyroscopic vibration absorbers, impact absorbers, absorbers attached to continuous systems	08
3	3.1 Vibration isolation of single degree of freedom systems: Isolators with complex stiffness, Isolators with Coulomb damping, Three- element isolators, Two-stage isolators, Pneumatic suspension, Concept of negative stiffness in vibration isolation	08
4.	 4.1 Active vibration control: Classification and modelling, actuators and sensors for active vibration control, Active vibration absorption and damping, classical control, optimal control, Piezoelectric transducers for active vibration control 4.2 Semi-active vibration control: Introduction, Magneto-rheological fluids, MR models and devices, semi-active suspension, narrowband disturbance 	08

5	5.1 Active, semi-active, and adaptive dynamic vibration absorbers:Active tuned vibration absorber, active mass damper, adaptive vibration absorber, semi-active tuned vibration absorber	
6	6.1 Active and semi-active vibration isolation: Active single-axis base isolation, active force isolation system, isolator based on piezoelectric stack actuator, semi-active isolation, Adaptive-passive vibration isolation, active control of vehicle suspensions	05

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 5. Question paper will comprise of total six questions, each carrying 20 marks.
- 6. **Question 1** will be **compulsory** and should **cover maximum contents of the curriculum.**
- 7. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 8. Only Four questions need to be solved.

Text/Reference Books:

- 1. A.K. Mallik and A. Chatterjee, "Principles of Active and Passive Vibration Control", East-West-Press 2014, ISBN: 9788176710985
- 2. A. Preumont, "Vibration Control of Active Structures", Springer 2018, ISBN: 9783319722962
- 3. S.S. Rao, "Mechanical Vibrations", 5th Edition 2004, Pearson Publications
- 4. Clarence de Silva, "Vibration: Fundamentals and Practice",1st Edition 2000, CRC Press, ISBN: 0849318084

Links for online NPTEL/SWAYAM courses:

https://nptel.ac.in/courses/112104211-Principles of Vibration Control, IIT Kanpur

https://nptel.ac.in/courses/112107088–Vibration control, IIT Roorkee